BACHELOR OF VOCATION
 Automotive Manufacturing
 Automotive Mechatronics
 Subject: Applied Mathematics
 Subject Code: BSC-101
 Semester: First
 September 2020
 Theory (External): 70 Marks
 Time: 03 hours

INSTRUCTIONS TO THE STUDENTS

1. Read the questions carefully and write the answers in the answer sheets.
2. Wherever necessary, the diagram drawn should be neat and properly labelled.
3. This questions paper comprises of 6 questions out of which student need to attempt any 3 questions.
4. All questions carry equal marks.
5. The time allotted will be 3 hours for examinations including time of downloading of question paper to emailing of answer books to the concerned Dean/IC.

ESSAY TYPE OUESTIONS

1. (i) Find the domain D of each of the following real valued functions of a real variable:
a) $f(x)=\frac{1}{x-2}$
b) $f(x)=\sqrt{25-x^{2}}$
c) $f(x)=x^{2}-3 x-4$
d) $f(x)=x^{2}$, where $0 \leq x \leq 2$
e) $f(x)=\frac{1}{x^{2}+5 x+6}$
(ii) Let $S=\{1,2,3, \ldots \ldots \ldots, 8,9\}$ and let R be the relation on $A \times A$ defined by $(a, b) R(c, d)$ whenever $a+d=b+c$, then
a) Prove that R is an equivalence relation.
b) Find the equivalence class of $(2,5)$.
2. (i) Prove that
a) $\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}=\tan 2 x$
b) $\cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)=-\sqrt{2} \sin x$
(ii) (a) Prove that $(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}=$ $4 \sin ^{2}\left(\frac{x-y}{2}\right)$
(b)Using Sine formula find the area of the triangle whose two corresponding sides are 35 cm and 28 cm making an angle of 60°.
3. (i) Find inverse of the matrix $\left[\begin{array}{ccc}1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8\end{array}\right]$ by adjoint method.
(ii) Solve the following simultaneous equations using Cramer's rule

$$
\begin{aligned}
& 3 x+y=1 \\
& 2 x=11 y+3
\end{aligned}
$$

4. (i) If $\cos y=x \cos a+y$, with, prove that $\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\sin a}$
(ii) Differentiate $\tan ^{-1}\left(\frac{\sin x}{1+\cos x}\right)$ with respect to x.
5. (i) Discuss the continuity of the function f defined by

$$
f(x)= \begin{cases}x+2, & \text { if } x \leq 1 \\ x-2, & \text { if } x>1\end{cases}
$$

(ii) Find the derivative of $\left(5 x^{3}+3 x-1\right)(x-1)$ with respect to x.
6. (i) Calculate the integral $\int \frac{x+2}{2 x^{2}+6 x+5} d x$.
(ii) Find the value of $\int \frac{x \cos ^{-1} x}{\sqrt{1-x^{2}}} d x$.

